import numpy as np
import pandas as pd
# Random Dataframe
df1 = pd.DataFrame(np.random.randn(10,5), columns =
['A','B','C','D','E'])
a1 = np.random.randn(10,5)
print(type(a1))
print(a1)
<class
'numpy.ndarray'>
[[
0.18659011 0.32508505 -0.34342072
-0.33952857 -0.48199335]
[-1.25637213
1.69819355 -1.9301858
-0.17224627 2.17514008]
[-0.31058854 -0.01588517 -1.1138929 -0.5838138
0.83741961]
[-0.4123694
-0.89220464 -1.4258579
1.51079098 1.20191611]
[ 0.06600725
2.45458766 1.37562926 -1.98480044
-1.62700227]
[-1.53102481 -0.79509763 -1.01322225 0.33331608
0.47981504]
[-0.15095467 -0.46888199 1.22936127
0.08834043 -1.59052134]
[ 0.84350394 -1.70928615 0.32424964 -0.21524692 0.38015035]
[ 1.86117202 -0.86295479 -1.31786209 1.53286495 -1.14890751]
[ 1.22011683
0.55062625 -0.93297329 -0.59828361
0.52727458]]
# Creating and writing into csv file.
df1.to_csv('C:/Users/kuldip_s/Documents/Python Scripts/random_data_csv.csv',sep=',',index
= False) # by default Index is True
# Creating and writing
into excel file.
df1.to_excel('C:/Users/kuldip_s/Documents/Python
Scripts/random_data_excel.xlsx',sheet_name='First_Sheet')
df2 = pd.read_csv('C:/Users/kuldip_s/Documents/Python
Scripts/random_data_csv.csv')
print(df2)
df3 = pd.read_csv('C:/Users/kuldip_s/Documents/Python
Scripts/random_data_csv.csv',sep=",", header=0)
print(df3)
A B C D E
0 1.373988 -0.695397 -1.561186 0.365325
0.867092
1 0.458764 -1.265745 0.090432
1.785799 0.034077
2
-0.330147 0.691178 1.928890 -0.555014 -0.163378
3
-0.737117 0.400541 -0.164102 -0.450007
-0.601012
4 1.331716
0.291633 -0.736913 -0.695256
0.801779
5
-0.577260 0.849215 -0.069959 0.397717
1.528757
6 0.889480
0.020148 0.354449 -1.041984 1.167718
7 2.455193 -0.534589 -0.589731 0.923948 -0.814283
8
-0.908036 -0.101546 -1.303603
0.319622 1.520226
9
-0.232327 0.030451 0.366966 -0.996714 -1.617141
A B C D E
0 1.373988 -0.695397 -1.561186 0.365325
0.867092
1 0.458764 -1.265745 0.090432
1.785799 0.034077
2
-0.330147 0.691178 1.928890 -0.555014 -0.163378
3
-0.737117 0.400541 -0.164102 -0.450007
-0.601012
4 1.331716
0.291633 -0.736913 -0.695256
0.801779
5
-0.577260 0.849215 -0.069959 0.397717
1.528757
6 0.889480
0.020148 0.354449 -1.041984 1.167718
7 2.455193 -0.534589 -0.589731 0.923948 -0.814283
8
-0.908036 -0.101546 -1.303603
0.319622 1.520226
9
-0.232327 0.030451 0.366966 -0.996714 -1.617141
df2 =
pd.read_excel('C:/Users/kuldip_s/Documents/Python
Scripts/random_data_excel.xlsx')
df3 = pd.read_excel('C:/Users/kuldip_s/Documents/Python
Scripts/random_data_excel.xlsx','First_Sheet')
df4 = pd.read_excel('C:/Users/kuldip_s/Documents/Python
Scripts/random_data_excel.xlsx','First_Sheet', index_col=0)
print('------------------------with no additional parameter---------')
print(df2)
print('------------------------printing 1st sheet ---------')
print(df3)
print('------------------------printing without index
---------')
print(df4)
print('------------------------printing without index
---------')
print(df4)
------------------------with
no additional parameter---------
Unnamed: 0 A B C D E
0 0
1.373988 -0.695397 -1.561186
0.365325 0.867092
1 1
0.458764 -1.265745 0.090432 1.785799
0.034077
2 2 -0.330147 0.691178
1.928890 -0.555014 -0.163378
3 3 -0.737117 0.400541 -0.164102 -0.450007 -0.601012
4 4
1.331716 0.291633 -0.736913
-0.695256 0.801779
5 5 -0.577260 0.849215 -0.069959 0.397717
1.528757
6 6
0.889480 0.020148 0.354449 -1.041984 1.167718
7 7
2.455193 -0.534589 -0.589731
0.923948 -0.814283
8 8 -0.908036 -0.101546 -1.303603 0.319622
1.520226
9 9 -0.232327 0.030451
0.366966 -0.996714 -1.617141
------------------------printing
1st sheet ---------
Unnamed: 0 A B C D E
0 0
1.373988 -0.695397 -1.561186
0.365325 0.867092
1 1
0.458764 -1.265745 0.090432 1.785799
0.034077
2 2 -0.330147 0.691178
1.928890 -0.555014 -0.163378
3 3 -0.737117 0.400541 -0.164102 -0.450007 -0.601012
4 4
1.331716 0.291633 -0.736913
-0.695256 0.801779
5 5 -0.577260 0.849215 -0.069959 0.397717
1.528757
6 6
0.889480 0.020148 0.354449 -1.041984 1.167718
7 7
2.455193 -0.534589 -0.589731
0.923948 -0.814283
8 8 -0.908036 -0.101546 -1.303603 0.319622
1.520226
9 9 -0.232327 0.030451 0.366966 -0.996714 -1.617141
------------------------printing
without index ---------
A B C D E
0 1.373988 -0.695397 -1.561186 0.365325
0.867092
1 0.458764 -1.265745 0.090432
1.785799 0.034077
2
-0.330147 0.691178 1.928890 -0.555014 -0.163378
3
-0.737117 0.400541 -0.164102 -0.450007
-0.601012
4 1.331716
0.291633 -0.736913 -0.695256
0.801779
5
-0.577260 0.849215 -0.069959 0.397717
1.528757
6 0.889480
0.020148 0.354449 -1.041984 1.167718
7 2.455193 -0.534589 -0.589731 0.923948 -0.814283
8
-0.908036 -0.101546 -1.303603
0.319622 1.520226
9
-0.232327 0.030451 0.366966 -0.996714 -1.617141
------------------------printing
without index ---------
A B C D E
0 1.373988 -0.695397 -1.561186 0.365325
0.867092
1 0.458764 -1.265745 0.090432
1.785799 0.034077
2
-0.330147 0.691178 1.928890 -0.555014 -0.163378
3
-0.737117 0.400541 -0.164102 -0.450007
-0.601012
4 1.331716
0.291633 -0.736913 -0.695256
0.801779
5
-0.577260 0.849215 -0.069959 0.397717
1.528757
6 0.889480
0.020148 0.354449 -1.041984 1.167718
7 2.455193 -0.534589 -0.589731 0.923948 -0.814283
8
-0.908036 -0.101546 -1.303603 0.319622 1.520226
9
-0.232327 0.030451 0.366966 -0.996714 -1.617141
cars = pd.read_excel('C:/Users/kuldip_s/Documents/Python
Scripts/mtcars set.xlsx')
print(cars)
Unnamed: 0 mpg
cyl disp hp
drat wt qsec
vs am \
0 Mazda RX4
21.0 6 160.0
110 3.90 2.620
16.46 0 1
1 Mazda RX4 Wag 21.0
6 160.0 110
3.90 2.875 17.02
0 1
2 Datsun 710 22.8
4 108.0 93
3.85 2.320 18.61
1 1
3 Hornet 4 Drive 21.4
6 258.0 110
3.08 3.215 19.44
1 0
4 Hornet Sportabout 18.7
8 360.0 175
3.15 3.440 17.02
0 0
5 Valiant 18.1
6 225.0 105
2.76 3.460 20.22
1 0
6 Duster 360 14.3
8 360.0 245
3.21 3.570 15.84
0 0
7 Merc 240D 24.4
4 146.7 62
3.69 3.190 20.00
1 0
8 Merc 230 22.8
4 140.8 95
3.92 3.150 22.90
1 0
9 Merc 280 19.2
6 167.6 123
3.92 3.440 18.30
1 0
10 Merc 280C 17.8
6 167.6 123
3.92 3.440 18.90
1 0
11 Merc 450SE 16.4
8 275.8 180
3.07 4.070 17.40
0 0
12 Merc 450SL 17.3
8 275.8 180
3.07 3.730 17.60
0 0
13 Merc 450SLC 15.2
8 275.8 180
3.07 3.780 18.00
0 0
14 Cadillac Fleetwood 10.4
8 472.0 205
2.93 5.250 17.98
0 0
15 Lincoln Continental 10.4
8 460.0 215
3.00 5.424 17.82
0 0
16 Chrysler Imperial 14.7
8 440.0 230
3.23 5.345 17.42
0 0
17 Fiat 128 32.4
4 78.7 66
4.08 2.200 19.47
1 1
18 Honda Civic 30.4
4 75.7 52
4.93 1.615 18.52
1 1
19 Toyota Corolla 33.9
4 71.1 65
4.22 1.835 19.90
1 1
20 Toyota Corona 21.5
4 120.1 97
3.70 2.465 20.01
1 0
21 Dodge Challenger 15.5
8 318.0 150
2.76 3.520 16.87
0 0
22 AMC Javelin 15.2
8 304.0 150
3.15 3.435 17.30
0 0
23 Camaro Z28 13.3
8 350.0 245
3.73 3.840 15.41
0 0
24 Pontiac Firebird 19.2
8 400.0 175
3.08 3.845 17.05
0 0
25 Fiat X1-9 27.3
4 79.0 66
4.08 1.935 18.90
1 1
26 Porsche 914-2 26.0
4 120.3 91
4.43 2.140 16.70
0 1
27 Lotus Europa 30.4
4 95.1 113
3.77 1.513 16.90
1 1
28 Ford Pantera L 15.8
8 351.0 264
4.22 3.170 14.50
0 1
29 Ferrari Dino 19.7
6 145.0 175
3.62 2.770 15.50
0 1
30 Maserati Bora 15.0
8 301.0 335
3.54 3.570 14.60
0 1
31 Volvo 142E 21.4
4 121.0 109
4.11 2.780 18.60
1 1
gear
carb
0 4
4
1 4
4
2 4
1
3 3
1
4 3
2
5 3
1
6 3
4
7 4
2
8 4
2
9 4
4
10 4
4
11 3
3
12 3
3
13 3
3
14 3
4
15 3
4
16 3
4
17 4
1
18 4
2
19 4
1
20 3
1
21 3
2
22 3
2
23 3
4
24 3
2
25 4
1
26 5
2
27 5
2
28 5
4
29 5
6
30 5
8
31 4
2
cars.head() # by default
first 5 rows
Out[8]:
Unnamed: 0
|
mpg
|
cyl
|
disp
|
hp
|
drat
|
wt
|
qsec
|
vs
|
am
|
gear
|
carb
|
|
0
|
Mazda RX4
|
21.0
|
6
|
160.0
|
110
|
3.90
|
2.620
|
16.46
|
0
|
1
|
4
|
4
|
1
|
Mazda RX4 Wag
|
21.0
|
6
|
160.0
|
110
|
3.90
|
2.875
|
17.02
|
0
|
1
|
4
|
4
|
2
|
Datsun 710
|
22.8
|
4
|
108.0
|
93
|
3.85
|
2.320
|
18.61
|
1
|
1
|
4
|
1
|
3
|
Hornet 4 Drive
|
21.4
|
6
|
258.0
|
110
|
3.08
|
3.215
|
19.44
|
1
|
0
|
3
|
1
|
4
|
Hornet Sportabout
|
18.7
|
8
|
360.0
|
175
|
3.15
|
3.440
|
17.02
|
0
|
0
|
3
|
2
|
cars.tail()
Out[9]:
Unnamed: 0
|
mpg
|
cyl
|
disp
|
hp
|
drat
|
wt
|
qsec
|
vs
|
am
|
gear
|
carb
|
|
27
|
Lotus Europa
|
30.4
|
4
|
95.1
|
113
|
3.77
|
1.513
|
16.9
|
1
|
1
|
5
|
2
|
28
|
Ford Pantera L
|
15.8
|
8
|
351.0
|
264
|
4.22
|
3.170
|
14.5
|
0
|
1
|
5
|
4
|
29
|
Ferrari Dino
|
19.7
|
6
|
145.0
|
175
|
3.62
|
2.770
|
15.5
|
0
|
1
|
5
|
6
|
30
|
Maserati Bora
|
15.0
|
8
|
301.0
|
335
|
3.54
|
3.570
|
14.6
|
0
|
1
|
5
|
8
|
31
|
Volvo 142E
|
21.4
|
4
|
121.0
|
109
|
4.11
|
2.780
|
18.6
|
1
|
1
|
4
|
2
|
cars.head(10)
Out[10]:
Unnamed: 0
|
mpg
|
cyl
|
disp
|
hp
|
drat
|
wt
|
qsec
|
vs
|
am
|
gear
|
carb
|
|
0
|
Mazda RX4
|
21.0
|
6
|
160.0
|
110
|
3.90
|
2.620
|
16.46
|
0
|
1
|
4
|
4
|
1
|
Mazda RX4 Wag
|
21.0
|
6
|
160.0
|
110
|
3.90
|
2.875
|
17.02
|
0
|
1
|
4
|
4
|
2
|
Datsun 710
|
22.8
|
4
|
108.0
|
93
|
3.85
|
2.320
|
18.61
|
1
|
1
|
4
|
1
|
3
|
Hornet 4 Drive
|
21.4
|
6
|
258.0
|
110
|
3.08
|
3.215
|
19.44
|
1
|
0
|
3
|
1
|
4
|
Hornet Sportabout
|
18.7
|
8
|
360.0
|
175
|
3.15
|
3.440
|
17.02
|
0
|
0
|
3
|
2
|
5
|
Valiant
|
18.1
|
6
|
225.0
|
105
|
2.76
|
3.460
|
20.22
|
1
|
0
|
3
|
1
|
6
|
Duster 360
|
14.3
|
8
|
360.0
|
245
|
3.21
|
3.570
|
15.84
|
0
|
0
|
3
|
4
|
7
|
Merc 240D
|
24.4
|
4
|
146.7
|
62
|
3.69
|
3.190
|
20.00
|
1
|
0
|
4
|
2
|
8
|
Merc 230
|
22.8
|
4
|
140.8
|
95
|
3.92
|
3.150
|
22.90
|
1
|
0
|
4
|
2
|
9
|
Merc 280
|
19.2
|
6
|
167.6
|
123
|
3.92
|
3.440
|
18.30
|
1
|
0
|
4
|
4
|
a1=cars.head(10)
a1.tail(3)
Out[11]:
Unnamed: 0
|
mpg
|
cyl
|
disp
|
hp
|
drat
|
wt
|
qsec
|
vs
|
am
|
gear
|
carb
|
|
7
|
Merc 240D
|
24.4
|
4
|
146.7
|
62
|
3.69
|
3.19
|
20.0
|
1
|
0
|
4
|
2
|
8
|
Merc 230
|
22.8
|
4
|
140.8
|
95
|
3.92
|
3.15
|
22.9
|
1
|
0
|
4
|
2
|
9
|
Merc 280
|
19.2
|
6
|
167.6
|
123
|
3.92
|
3.44
|
18.3
|
1
|
0
|
4
|
4
|
# View number of rows and
columns in a dataframe
cars.shape
Out[12]:
(32,
12)
# print consize summary
info of columns
cars.info(null_counts=True)
<class
'pandas.core.frame.DataFrame'>
RangeIndex:
32 entries, 0 to 31
Data
columns (total 12 columns):
Unnamed:
0 32 non-null object
mpg 32 non-null float64
cyl 32 non-null int64
disp 32 non-null float64
hp 32 non-null int64
drat 32 non-null float64
wt 32 non-null float64
qsec 32 non-null float64
vs 32 non-null int64
am 32 non-null int64
gear 32 non-null int64
carb 32 non-null int64
dtypes:
float64(5), int64(6), object(1)
memory
usage: 3.1+ KB
cars.mean()
Out[14]:
mpg 20.090625
cyl 6.187500
disp 230.721875
hp 146.687500
drat 3.596563
wt 3.217250
qsec 17.848750
vs 0.437500
am 0.406250
gear 3.687500
carb 2.812500
dtype:
float64
cars.median()
Out[15]:
mpg 19.200
cyl 6.000
disp 196.300
hp 123.000
drat 3.695
wt 3.325
qsec 17.710
vs 0.000
am 0.000
gear 4.000
carb 2.000
dtype:
float64
cars.std()
Out[16]:
mpg 6.026948
cyl 1.785922
disp 123.938694
hp 68.562868
drat 0.534679
wt 0.978457
qsec 1.786943
vs 0.504016
am 0.498991
gear 0.737804
carb 1.615200
dtype:
float64
cars.max()
Out[17]:
Unnamed:
0 Volvo 142E
mpg 33.9
cyl 8
disp 472
hp 335
drat 4.93
wt 5.424
qsec 22.9
vs 1
am 1
gear 5
carb 8
dtype:
object
cars.count()
Out[18]:
Unnamed:
0 32
mpg 32
cyl 32
disp 32
hp 32
drat 32
wt 32
qsec 32
vs 32
am 32
gear 32
carb 32
dtype:
int64
No comments:
Post a Comment